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Research Interests

• Natural language processing and machine learning, using
unsupervised methods for deciphering hidden structure.

• End applications include: various types of human artifacts, including
natural language and diverse sources like early modern books,
handwritten text, historical ciphers, and music.
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Motivation

• Although parallel text is plentiful for some language pairs such as
English-Chinese or English-Arabic, it is scarce or even non-existent for
most others, such as English-Hindi or French-Japanese

• Parallel text could be scarce for a language pair even if monolingual
data is readily available for both languages.

• Objective: Generate translation pairs from monolingual corpus using
a generative model.



Methodology

• S= 𝑠1, 𝑠2, … . 𝑠𝑛 : Source corpus of n source words

• T= 𝑡1, 𝑡2, … . 𝑡𝑚 : Target corpus of m target words

• Output: 𝑚 = { 𝑠𝑖 , 𝑡𝑗 , ∀𝑖, 𝑗}

• In other words: Find optimal full bipartite matching between S and T.



Methodology (contd.)

• Initialize the matching prior as uniform distribution

• For each matched pair {𝑠𝑖 , 𝑡𝑗} extract feature set 𝑓𝑠(𝑠𝑖) and 𝑓𝑡(𝑡𝑗)

• ‘Explain away’ translation pairs in a language independent canonical 
subspace



Methodology (contd.)

• 𝑓𝑠 𝑠𝑖 ~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑊𝑠𝑧𝑖𝑗 , 𝜓𝑠

• 𝑓𝑡 𝑡𝑗 ~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑊𝑡𝑧𝑖𝑗 , 𝜓𝑡)

• Maximize the likelihood of :

𝑙 𝜃 = 𝑙𝑜𝑔 𝑚 𝑝(𝑚, 𝑠, 𝑡; 𝜃)
• 𝜃 = 𝑊𝑠.𝑊𝑇 , 𝜓𝑠, 𝜓𝑇
• Approximate 𝑝 𝑚, 𝑠, 𝑡; 𝜃 =  (𝑖,𝑗)𝑤𝑖𝑗 + 𝐶

• Optimize 𝜃 using a modified EM algorithm.



Experimental Results
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Motivation

• Probabilistic model that describes the process by which discrete
musical events give rise to (separate) acoustic signals for each
keyboard note, and the process by which these signals are
superimposed to produce the observed data.

• Output: Given a piano recording, without any previously seen data,
the model generates a MIDI like symbolic representation of the audio.



Why is this task difficult?

• Even individual piano notes are quite rich.
• A single note is not simply a fixed-duration sine wave at an appropriate

frequency, a full spectrum of harmonics that rises and falls in intensity.

• Profiles vary from piano to piano and therefore must be learned in a 
recording-specific way => supervised way.

• Piano music is generally polyphonic, i.e. multiple notes are played 
simultaneously. 
• Combinations of notes exhibit ambiguous harmonic collisions

• Inherent source separation problem.



Why is this task difficult? (contd.)

• Most previous work:
• Better modelling of the discrete musical structure
• Or, better adapting to the timbral properties of the source instrument
• Why?

• Coupling these discrete models with timbral adaptation and source separation breaks the 
conditional independence assumptions that the dynamic programs (e.g. HMM, Semi-markov
models) rely on.

• Tackles these discrete and timbral modelling problems jointly
• New generative model that reflects the causal process underlying piano sound 

generation
• Tractable approximation to the inference problem over transcriptions and timbral

parameters



Model



Model (contd.)

• Consider a song S, divided into T time steps. The transcription will be I 
musical events long.

• The component model for a single note C’ in S has 3 primary random 
variables:
• M, a sequence of I symbolic musical events, analogous to the locations and 

values of symbols along the C’] in sheet music,



Model(contd.)

• A, a time series of T activations, analogous to the loudness of sound 
emitted by the C’ piano string over time as it peaks and attenuates 
during each event in M.

• S, a spectrogram of T frames, specifying the spectrum of frequencies 
over time in the acoustic signal produced by the C’ string.



Model(contd.)

• Joint distribution of a note is:

𝑃 𝑆, 𝐴,𝑀 𝜎𝐶
′
, 𝛼𝐶

′
, 𝜇𝐶

′
= 𝑃 𝑀 𝜇𝐶

′
∗ 𝑃 𝐴 𝑀, 𝛼𝐶

′
∗ 𝑃(𝑆|𝐴, 𝜎𝐶

′
)

• 𝜇𝐶
′
= How long the C’ string is likely to be held for (duration), and how hard it 

is likely to be pressed (velocity).

• 𝛼𝐶
′
=The shape of the rise and fall of the string’s activation each time the note 

is played.

• 𝜎𝐶
′
= The frequency distribution of sounds produced by the C’ string



Full model of a song

• Each pair of note 𝑛 (on a standard piano 88 notes) and song 𝑟, is 
defined by:
• Musical events model (𝐌𝐧𝐫 = {𝑚1𝑟 , 𝑚2𝑟 , …𝑚𝑛𝑟})

• Activation model 𝐀𝐧𝐫 = {𝑎1𝑟 , 𝑎2𝑟 …𝑎𝑛𝑟}

• Spectrogram model (𝐒𝐧𝐫 = {𝑠1𝑟 , 𝑠2𝑟 …𝑠𝑛𝑟})

• Event parameters (𝛍𝐧 = {𝜇1, 𝜇2…𝜇𝑛})

• Activation parameters (𝛂𝐧 = {𝛼1, 𝛼2…𝛼𝑛})

• Spectrogram parameters (𝛔𝐧 = {𝜎1, 𝜎2…𝜎𝑛})



Learning and Inference

• Goal: Estimate the unobserved musical events for each song, M(r), as
well as the unknown envelope and spectral parameters of the piano
that generated the data, 𝜎 and 𝛼.
• Compute the posterior distribution on M, 𝜎 and 𝛼.

• Approximate the joint MAP estimates of M , A, 𝜎 and 𝛼 via iterated
conditional modes by marginalizing over the component spectrograms 𝑆.

• Update parameters via block-coordinate ascent.



Experimental Results
• Evaluated on MIDI-Aligned Piano Sounds (MAPS) corpus.

• First 30 seconds of each of the 30 ENSTDkAm recordings as a development set

• First 30 seconds of each of the 30 ENSTDkCl recordings as a test set.

• Symbolic music data from the IMSLP library used to estimate the 
event parameters in the model.



Experimental Results(contd.)

• State of the art results
• > 10% improvement over best published result



Questions?


